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Abstract

Many models, either numerical or analytical, have been proposed to analyse the thermal response of vertical heat exchangers that are
used in ground coupled heat pump systems (GCHP). In both approaches, most of the models are valid after few hours of operation since
they neglect the heat capacity of the borehole. This is valid for design purposes, where the time of interest is in the order of months and
years. Recently, the short time response of vertical boreholes became a subject of interest. In this paper, we present a new analytical
approach to treat this problem. It solves the exact solution for concentric cylinders and is a good approximation for the familiar U-tube
configuration.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Ground coupled heat pump systems exist for many years
and the concept is widely accepted as one of the best renew-
able energy technology. Until recently, the initial cost of
these systems hindered their growth, especially for residen-
tial purposes. The recent increase in energy costs and the
need to reduce greenhouse effect gases will hopefully
increase their use. An important part of the cost of the sys-
tem is the heat exchanger in the ground. The efficiency of
such a system depends on how much heat is extracted (in
winter) or rejected (in summer) in the ground. In the case
of vertical heat exchangers, in most configurations, the fluid
passes through U-tubes in the form shown in Fig. 1. The
borehole is then filled by a material called grout. Typical
boreholes have one or two U-tubes and may have more
than one borehole. For the design of vertical boreholes,
we are interested in the heat transfer between the working
fluid and the ground. There have been a number of models
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based on some analytical solutions like proposed by Inger-
soll [1] or Kavanaugh [2] or numerical solutions like the one
proposed by Eskilson’s [3] and Hellstrom [4] that were used
for designing vertical boreholes used in GCHP systems. As
we will see in the following section, these models often
neglect or use a oversimplified approach to treat the bore-
hole short time behaviour. In many design programs, this
is not important since the time of interest is in the order
of months and years when this effect is negligible. For exam-
ple, Eskilson’s proposed the following limit for its model:

t >
5r2

b

a
ð1Þ

For a typical borehole, this value can be in the order of 3–
6 h. In recent years, short time simulations of GCHP sys-
tems in the order of minutes ask for a more precise model
for these time intervals. Yavuzturk and Spitler [5] were one
of the first to analyse the problem. They actually solved the
numerical heat diffusion problem in the ground taking into
account the heat capacity of the pipe and the grout. Sutton
et al. [6] and Young [7] both proposed recently some ana-
lytical solutions for this problem that will be described in
the following section.
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Nomenclature

Cp specific heat (J kg�1 K�1)
E1 exponential integral
G G-function
H borehole length (m)eH non-dimensional convection coefficient (Biot

number)
k thermal conductivity (W m�1 K�1)
_m mass flow rate (kg s�1)
q0 heat flux per unit length (W m�1)
r radial coordinate (m)
~r non-dimensional radius r/rb

R0 unit length thermal resistance (K m W�1)
~t non-dimensional time at/r2 (Fourier number)
T temperature (K)
z axial coordinate (m)

Greek symbols

a thermal diffusivity (m2 s�1)
d rb/re

c
ffiffiffiffiffiffiffiffiffiffiffi
ag=as

p
Subscripts

b at the borehole radius
e outer radius of the inner tube for concentric cyl-

inders
f associated to the calorimetric fluid
fi fluid entrance
fo fluid outlet
g associated to the grout material
p at the pipe radius
s associated to the soil material

Fig. 1. Ground heat exchanger.
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In this paper, we propose a new analytical approach to
the short-time response of a vertical borehole. It is based
on the exact solution of the heat equation in a compound
infinite medium. It will be seen that it is a very good
approximation for the U-tube shape configuration found
in most ground heat exchangers. It shares the flexibility
associated with analytical solutions and the results will be
compared with the other proposed solutions.
2. Existing models

The classical approach for the analysis of vertical heat
exchangers is to model the inside of the borehole as a sim-
ple thermal resistance. The mean fluid temperature, Tf(t),
can be computed using the following simple expression:

T fðtÞ � T bðtÞ ¼ q0bðtÞR0b ð2Þ

where R0b is the unit length resistance of the borehole which
considers the convection between the fluid and its wall, the
conduction in the tube wall and the conduction in the
grout. Since the heat is transferred to a moving fluid, this
temperature is in fact a mean fluid temperature:

T fðtÞ ¼
T fiðtÞ þ T foðtÞ

2
ð3Þ

and the inlet and outlet temperatures can be computed
from the following relations:

q0bðtÞL
_mCp

¼ T fiðtÞ � T foðtÞ ð4Þ

T foðtÞ ¼ T fðtÞ þ
q0bðtÞH
2 _mCp

ð5Þ

The borehole temperature Tb(t) is found from the transient
thermal response in the infinite ground. Analytical or
numerical solutions are used to find this temperature.
The mostly used numerical solution is the DST (duct stor-
age model) proposed by Hellström [4], which is imple-
mented in the TRNSYS simulation software package.
One of the two major analytical solutions is known as
the line source model [1]:

T ð~r;~tÞ � T 0 ¼
q0b

4pk

Z 1

~r2=4~t

e�u

u
du ¼ q0b

4pk
E1ð~r=ð4~tÞÞ ð6Þ

where E1 is the exponential integral, ~r ¼ r=rb;~t ¼ at=r2
b ¼

Fouriernumber and T0 is the undisturbed ground tempera-
ture. The other well-known solution is the cylindrical heat
source (CHS) solution given by Carslaw and Jaeger [8]:

T ð~r;~tÞ�T 0

¼ q0b
k

1

p2

Z 1

0

e�b2~t�1

b2ðJ 2
1ðbÞþY 2

1ðbÞÞ
J 0ð~rbÞY 1ðbÞ�J 1ðbÞY 0ð~rbÞ½ �db|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gð~r;~tÞ

ð7Þ
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This solution is often referred in the literature as the G-

function. This is basically the exact solution of the follow-
ing mathematical problem:

1

a
oT
ot
¼ o2T

or2
þ 1

r
oT
or

ð8Þ

for the domain r > rb, t > 0, and the following boundary
conditions

T ðr; 0Þ ¼ T 0; �k
oT
or

����
r¼rb

¼ q00bðtÞ ¼
q0bðtÞ
2prb

ð9Þ

In both cases, the borehole temperature is found by evalu-
ating the given expression at ~r ¼ 1. In this approach, the
evaluation of the borehole resistance R0b is crucial. Young
[7] gives a very good survey of these methods. The two ma-
jor approaches used are the one proposed by Paul [9] and
by Hellström [4]. The first one is given in terms of shape
factors.

R0b ¼
1

Skgrout

ð10Þ

where the shape factor S is given by

S ¼ b0

rb

r0

� �b1

ð11Þ

The values of the two parameters b0, b1 are found from cor-
relations from numerical results. They are function of the
so-called shank spacing. The values are given in Table 1.

Hellstrom [4] proposed two methods, one based on the
line source for composite region, which is an approxima-
tion of the more general multipole method proposed by
Bennet et al. [10]. Since the results from the line source
are very similar to the multipole expansion, this approach
is usually used in the DST model, the main reference for
vertical ground heat exchangers. The line source method
offers two main advantages: it takes into account the differ-
ent conductivities of the grout and the soil, and it is appli-
cable for multiple U-tubes in the boreholes. Whatever
method is used to model the thermal resistance of the bore-
hole, the fact to replace the borehole by a simple thermal
resistance gives wrong results for the initial response of
the whole system. Indeed, two problems will arise from
the application of (2) and (3). First, as soon as a heat flow
is imposed between the fluid and the ground, a DT given by
(2) will be felt whereas from physical reasoning, we would
expect a certain time for this to build-up. Secondly, the
thermal resistance found from the steady state analysis of
the grout will be overestimated from the one felt in reality.
For these reasons, the short time response of vertical bore-
holes has been a subject of interest recently.
Table 1
Paul curve fit parameters for (10) and (11)

A B C

b0 14.450872 17.44268 21.90587
b1 �0.8176 �0.605154 �0.3796
As we said in Section 1, Yavuzturk and Spitler [5] solved
the numerical heat diffusion in the ground taking into
account the heat capacity of the pipe and the grout. Their
numerical results were then expressed in term of a short-

time g-function, a concept introduced by Eskilson [3] and
defined as

T b � T 0 ¼
q0b

2pk
gðt=ts; rb=HÞ ð12Þ

where H is the height of the borehole and ts = H2/(9a), the
reference time for their analysis. This time is actually a typ-
ical time when axial conduction effects become important
and it is generally very long. The problem with numerical
results is that we need the program if we want to know
the effect of various material properties like grout conduc-
tivity and heat capacity. Sutton et al. [6] proposed the fol-
lowing algorithm to take into account the short time
behaviour on the borehole. They express their results in
terms of the pipe temperature Tp(t), which is the outside
temperature of the U-tube pipe. Although they refer to this
temperature as the fluid temperature, this is strictly true if
we neglect the convection thermal resistance and the pipe
conduction resistance. They first use the classical cylindri-
cal source solution but with the material properties of the
grout and they replace the U-tube arrangement by an
equivalent cylinder, req for the radius of the cylinder
source. This solution can be modeled by the following
relation:

T pðtÞ � T 0 ¼
q0b
kg

Gð1; agt=r2
eqÞ ¼ q0bR0stðtÞ ð13Þ

A transition time sgrout is defined as

R0stðsgroutÞ ¼ R0b ð14Þ

and the final solution is given by

T pðtÞ � T 0 ¼
q0

b

kg
Gð1; agt=r2

eqÞ; t < sgrout

q0b
Gð1;ast=r2

b
Þ

ks
þ R0b

� �
; t > sgrout

8<
: ð15Þ

In their approach they defined an equivalent radius, a tech-
nique which is very often used in the analytical treatment of
U-tubes ground exchangers. Bose [11] was one of the first
to propose the following value:

req ¼
ffiffiffi
2
p

r0 ð16Þ

Kavanaugh [2] suggested to include a correction factor to
this value:

req ¼
ffiffiffi
2
p

r0 þ x ð17Þ

where x is the shank spacing between the tubes (Fig. 2).
The value proposed by Sutton et al. is different. They pro-
pose the following value for the equivalent radius:

log rb

req

� �
2pkg

¼ R0b ð18Þ



Fig. 2. Thermal resistances.

Fig. 4. Buried cable model.
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In their work they used the solution proposed by Paul for
R0b. We will come back to the solution proposed by Sutton
et al. in Section 3 (see Fig. 3).Young [7] propose a different
approach to evaluate the short time response of the bore-
hole. It uses the exact solution of the following problem:
the heat from or to the ground is exchanged with two per-
fect conductors separated by a contact resistance. The
physical problem is illustrated in Fig. 4 and the solution
is also given by Carslaw and Jaeger [8, p. 344]. It is referred
as the buried cable solution since it was solved in the con-
text of a buried electrical cable. In this context, the two per-
fect conductors are the current-carrying core (in copper or
aluminum) separated from a metal sheath and the contact
thermal resistance R0 represent the electrical insulation be-
tween these two conductors. The solution of the problem is
given by Eq. (8) but now with the following boundary
conditions:

T ðr; 0Þ ¼ T 0;

2prbks

oT
or

����
r¼rb

¼ T 2 � T 1

R0
þ Ac2q2Cp2|fflfflfflfflffl{zfflfflfflfflffl}

S2

oT 2

ot
ð19Þ

Another heat balance is needed for the core

q0b ¼
T 1 � T 2

R0
þ Ac1q1Cp1|fflfflfflfflffl{zfflfflfflfflffl}

S1

oT 1

ot
ð20Þ
Fig. 3. Paul sha
where Ac stands for the cross-section area or the volume
per unit length of the cylinder. The problem is solved by
Laplace transform and the solution is given by

T pð~tÞ � T 0 ¼
q0b
ks

2a2
1a

2
2

p3

Z 1

0

ð1� e�b2~tÞdb

b3DðbÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gbcð~tÞ

ð21Þ

where

a1 ¼
2pr2

bqsCps

S1

; a2 ¼
2pr2

bqsCps

S2

; eU ¼ 2pR0ks ð22Þ

DðbÞ ¼ ðbða1 þ a2 � ~Ub2ÞJ 0ðbÞ � a2ða1 � ~Ub2ÞJ 1ðbÞÞ2

þ ðbða1 þ a2 � ~Ub2ÞY 0ðbÞ � a2ða1 � ~Ub2ÞY 1ðbÞÞ2

ð23Þ

Even though the solution was given in the context of a bur-
ied cable, Young successfully applied this solution to the
vertical heat exchanger where the core was replaced by
an annular of fluid with heat applied at its inner radius,
the metal sheath represents the thermal capacity of the
grout and the contact resistance models the steady-state
thermal resistance. In his work he used the multipole
expression of Bennet et al. for the value of the resistance.
To have better results, he modified the model by moving
part of the grout thermal capacity from the outside of
the thermal resistance to the inside of the thermal resis-
tance (in the core region) through a grout allocation factor
(GAF) defined as

S1f ¼ S1 þ S2f ; S2f ¼ S2ð1� f Þ ð24Þ
with 0 < f < 1 being the GAF. We will discuss the results
from this model in Section 3. Finally, some numerical
nk spacing.
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models now attack the short time response of a buried heat
exchanger. This is the case, for example of the TRNSYS
TYPE451 component [12]. In this paper we present, what
we think is a new contribution to the analytical description
of the short time response of a vertical heat exchanger.
Although numerical solutions are easily obtained with the
use of modern computers, a good analytical description
of the physical problem is always a good tool to add flexi-
bility for different configurations in the design step of the
borehole field.
3. New solution of the short time response factor

Since both analytical solutions given in the previous sec-
tion are approximations of the following problem:

1

ag

oT 1

ot
¼ o2T 1

or2
þ 1

r
oT 1

or
ð25Þ

for the domain re < r < rb, t > 0, where T1 represent the
grout temperature.

1

as

oT 2

ot
¼ o2T 2

or2
þ 1

r
oT 2

or
ð26Þ

for the domain rb < r, t > 0, where T2 is the soil tempera-
ture. A natural choice is to solve the real problem exactly.
As all the other analytical models, it will be an approxima-
tion for the general U-tube configuration. Since this prob-
lem does not seem to be presented in the classical books on
heat conduction like the one from Carslaw and Jaeger [8]
or the one by Osizick [13], it is believed to be a new contri-
bution to the field. It will be seen that, although the expres-
sions become rather complicated, they can be written in
closed form and computed easily with the availability of
mathematical softwares. We will treat two different cases:
the first one is the classical approach where the total heat
per unit length q0b is given. The second case is when the
mean fluid temperature is known and heat is transferred
through convection to the pipe. In the first case, compari-
son to the two other analytical solutions is easily done.
3.1. Heat flux imposed

In this case, besides the governing Eqs. (25) and (26), the
following boundary conditions are imposed

T 1ðr; 0Þ ¼ T 2ðr; 0Þ ¼ T 0; �kg
oT 1

or

����
r¼re

¼ q00bðtÞ ð27Þ

T 1ðrb; tÞ ¼ T 2ðrb; tÞ; �kg
oT 1

or

����
r¼rb

¼ �ks
oT 2

or

����
r¼rb

ð28Þ

Although lengthy, the procedure is classical as it is ex-
plained in Carslaw and Jaegers [8]. The solution is found
using the Laplace transform: (25) and (26) become

d2T
dr2
þ 1

r
dT
dr
� q2T ¼ 0 ð29Þ
where T is the Laplace transform of T � T0 and q2 = s/a.
The solutions of (29) for both regions are

T 1 ¼ c1K0ðq1rÞ þ c2I0ðq1rÞ ð30Þ
T 2 ¼ c3K0ðq2rÞ þ c4I0ðq2rÞ ð31Þ

As usual, c4 = 0 to keep the temperature finite. The other
constants are found from the other boundary conditions.
Solving for a step change of the heat flux, q0bðtÞ ¼ q0buðtÞ
we find

� kg

dT 1ðq1reÞ
dr

¼ ðc1K1ðq1reÞ � c2I1ðq1reÞÞq1kg ¼
q00b
s

ð32Þ

c1K0ðq1rbÞ þ c2I0ðq1rbÞ ¼ c3K0ðq2rbÞ ð33Þ
ðc1K1ðq1rbÞ � c2I1ðq1rbÞÞq1kg ¼ c3K1ðq2rbÞq2ks ð34Þ

The solution for T 1 becomes

T 1ðs;rÞ¼
q00b

q1kgsden
ðK0ðq2rbÞI1ðq1rbÞþ~kcK1ðq2rbÞI0ðq1rbÞÞ
	

K0ðq1rÞ

þðK0ðq2rbÞK1ðq1rbÞ�~kcK1ðq2rbÞK0ðq1rbÞÞI0ðq1rÞ


ð35Þ

with

den ¼ ðK0ðq2rbÞI1ðq1rbÞ þ ~kcK1ðq2rbÞI0ðq1rbÞÞK1ðq1reÞ
� ðK0ðq2rbÞK1ðq1rbÞ � ~kcK1ðq2rbÞK0ðq1rbÞÞI1ðq1reÞ

and c ¼
ffiffiffiffiffiffiffiffiffiffiffi
ag=as

q
; ~k ¼ ks=kg ð36Þ

As usual the inverse found from the inversion theorem on
the contour is shown in Fig. 6.

T 1ðt; rÞ ¼ T 0 þ
1

2pj

Z aþj1

a�j1
estT 1ðs; rÞds ð37Þ

It can be shown that there are no poles within or on the
contour (Appendix A). So the solution is given by

T 1ðt; rÞ ¼ T 0 þ
1

2pj

Z
C1þC2þC3þC4þC5

estT 1ðs; rÞds ð38Þ

As it is, the solution would be singular on C3, so we find the
solution for

sT 1 ¼L
oT 1

ot
� ðT 1ð0; rÞ � T 0Þ

� �
¼L

oT 1

ot

� �

oT 1

ot
¼ 1

2pj

Z
C1þC2þC3þC4þC5

estsT 1ðs; rÞds ð39Þ

It is easy to verify that the contributions on C1, C3, C5 are
zero. The remaining will give the following solution:

T 1ð~r;~tÞ�T 0¼
q0b
kg

4~k

p4d2

Z 1

0

ðY 0ðb~rÞJ 1ðbÞ�J 0ðb~rÞY 1ðbÞÞ 1� e�b2~t
� �

b4ð/2þw2Þ
db|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Gstq ð~r;~tÞ

ð40Þ

with
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/ ¼ Y 1ðbÞ½Y 0ðbdcÞJ 1ðbdÞ � Y 1ðbdcÞJ 0ðbdÞ~kc�
� J 1ðbÞ½Y 0ðbdcÞY 1ðbdÞ � Y 1ðbdcÞY 0ðbdÞ~kc� ð41Þ

w ¼ J 1½ðbÞJ 0ðbdcÞY 1ðbdÞ � J 1ðbdcÞY 0ðbdÞ~kc�
� Y 1ðbÞ½J 0ðbdcÞJ 1ðbdÞ � J 1ðbdcÞJ 0ðbdÞ~kc� ð42Þ

and

~r ¼ r=re; ~t ¼ agt=r2
e ; d ¼ rb=re

The notation Gstq stands for the short time G-function for

fixed flux. Before giving numerical values, we might verify
that the solution is indeed the classical solution when the
two mediums are the same. Putting ~k ¼ c ¼ 1 in the last
solution we obtain

/ ¼ 2Y 1ðbÞ
pbd

; w ¼ 2J 1ðbÞ
pbd

ð43Þ

and (40) gives the classical G-function given by (7). In most
cases, we are mainly concern with the temperature at the
boundary. In that case (40) becomes:

T pð~tÞ ¼ T 1ð1;~tÞ ¼ T 0 þ
q0b
kg

8~k

p5d2

Z 1

0

1� e�b2~t
� �
b5ð/2 þ w2Þ

db|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gstq ð1;~tÞ

ð44Þ
3.2. Convection

In this case, we solve again the Eqs. (25) and (26) but
with the following boundary conditions

T 1ðr; 0Þ ¼ T 2ðr; 0Þ ¼ T 0; �kg
oT 1

or

����
r¼re

¼ hðT f � T 1ðre; tÞÞ

ð45Þ

T 1ðrb; tÞ ¼ T 2ðrb; tÞ; �kg

oT 1

or

����
r¼rb

¼ �ks

oT 2

or

����
r¼rb

ð46Þ

We will first analyse the case where Tf is constant. In this
case the solution will be given in terms of T , the Laplace
transform of T � Tf. The solutions for both regions are
now:

T 1 ¼ c1K0ðq1rÞ þ c2I0ðq1rÞ þ T 0 � T f

s
ð47Þ

T 2 ¼ c3K0ðq2rÞ þ T 0 � T f

s
ð48Þ

Following the same procedure as the last section, the solu-
tion for T 1 becomes

T 1ðs; rÞ ¼
T 0 � T f

s
1� K0ðq2rÞ

q1rbðn1q1 � n2q2Þ

� �
ð49Þ

with

n1 ¼ K0ðq2rbÞI1ðq1rbÞ þ ~kcK1ðq2rbÞI0ðq1rbÞ ð50Þ
n2 ¼ K0ðq2rbÞK1ðq1rbÞ � ~kcK1ðq2rbÞK0ðq1rbÞ ð51Þ
q1 ¼
q1kg

h
K1ðq1reÞ þ K0ðq1reÞ ð52Þ

q2 ¼
q1kg

h
I1ðq1reÞ � I0ðq1reÞ ð53Þ

Again, there are no poles inside the contour (Appendix A).
The solution is given by

T 1ðt;rÞ�T f ¼
T 0�T f

2pj

Z
C1þC2þC3þC4þC5

est K0ðq2rÞ
sq1rbðn1q1�n2q2Þ

ds

ð54Þ

Again the contributions on C1 and C5 are zero. However,
the C3 will give a contribution which will cancel the T0

term. The remaining parts of the contour will give the fol-
lowing solution:

T ð~r;~tÞ � T f ¼ ðT 0 � T fÞ
8~k eH
p3d2

Z 1

0

!e�b2~t

b3ð/2
c þ w2

cÞ
db|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Gstcð~r;~tÞ

ð55Þ

with

!¼ b½Y 0ðb~rÞJ 1ðbÞ�J 0ðb~rÞY 1ðbÞ�

þ~kc eH ½Y 0ðb~rÞJ 0ðbÞ� J 0ðb~rÞY 0ðbÞ� ð56Þ
/c¼ ½ eH J 0ðbÞþbJ 1ðbÞ�½J 0ðbdcÞY 1ðbdÞ� J 1ðbdcÞY 0ðbdÞ~kc�

� ½ eH Y 0ðbÞþbY 1ðbÞ�½J 0ðbdcÞJ 1ðbdÞ� J 1ðbdcÞJ 0ðbdÞ~kc� ð57Þ
wc¼ ½ eH J 0ðbÞþbJ 1ðbÞ�½Y 0ðbdcÞY 1ðbdÞ�Y 1ðbdcÞY 0ðbdÞ~kc�

� ½ eH Y 0ðbÞþbY 1ðbÞ�½Y 0ðbdcÞJ 1ðbdÞ�Y 1ðbdcÞJ 0ðbdÞ~kc�

and eH ¼ hre

kg
ð58Þ

The notation Gstc stands for the short time G-function for

convection. Again we can compare this expression when
the two mediums are the same. Putting ~k ¼ c ¼ 1 in the last
solution we obtain

! ¼ Y 0ðb~rÞðbJ 1ðbÞ þ eH J 0ðbÞÞ � J 0ðb~rÞðbY 1ðbÞ þ eH Y 0ðbÞÞ
ð59Þ

/c ¼
2ð eH J 0ðbÞ þ bJ 1ðbÞÞ

pbd
;

wc ¼
2ð eH Y 0ðbÞ þ bY 1ðbÞÞ

pbd
ð60Þ

and (55) gives the classical solution given by Carslaw and
Jaeger’s [8, p. 337]. As usual, we are mostly interested in
the solution at the boundary which will be given by the fol-
lowing expression:

T pð1;~tÞ ¼ T 1ð1;~tÞ

¼ T f þ ðT 0 � T fÞ
16~k eH
p4d2

Z 1

0

e�b2~t

b3ð/2
c þ w2

cÞ
db|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Gstc ð1;~tÞ

ð61Þ



Fig. 5. Concentric cylinder.

Fig. 6. Contour used for (36).
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4. Numerical results

The analytical solutions presented in the previous sec-
tion were compared with numerical solutions. All the
numerical calculations were done with the Comsol� finite
element software. Mesh refinement was done until no var-
iation in the results was observed. Two series of numerical
tests were carried out. In the first case, the solution was
given for two concentric cylinders, one finite, representing
the grout, and a infinite cylinder representing the soil
(Fig. 5). In the finite element program, the infinite cylinder
was replaced by a finite one where undisturbed temperature
was imposed. The outer radius was augmented until no
variation in the results was observed. In the second case,
the solution was compared with a real single U-tube config-
uration. In the first case, our model is the exact solution of
the problem and no variation with the numerical results is
expected. It is basically a numerical validation of the
expressions found. In the second case, the model is an
approximation of the real case and the new model is com-
pared with some other analytical approximate expressions.
4.1. Concentric cylinders heat flux imposed

Although (44) and (61) look rather repulsive, the avail-
ability of powerful interface like matlab� allows their
implementation in a straightforward way. The solutions
(44) and (61) are then the real analytical solutions of the
problem and both results should be the same. The two
different cases, fixed flux and imposed convection are
compared. Results for different conductivities and heat
capacity will be shown. On the figures we also compare
the new solution with the ‘‘buried cable” solution intro-
duced by Carslaw and Jaeger and proposed by Young [7]
and also the compound solution of Sutton et al. [6]. Before
giving the results, some comments should be given. First of
all, in the model proposed by Young, the capacity of the
fluid was taken into account. Actually the total fluid capac-
ity could include fluid from outside the borehole in a factor
that he called a fluid multiplication factor that takes into
account the fluid outside the borehole, like the one in res-
ervoirs. The main argument with that approach is to simu-
late the time needed by the heat source to bring the thermal
fluid at a given temperature. Doing so he considers the
borehole, the earth and the fluid as a closed system. In
our mind, we prefer analysing the fluid as an open system
with a given temperature. The initial time needed to heat
that fluid would eventually be modeled outside the bore-
hole model. The modeling of the whole system, earth heat
exchanger, heat pump reservoirs, etc. will be presented in
another paper. In our results, we only consider the heat
capacity of the grout. However, we keep the two conduc-
tors model in order to have better results. This can be seen
as choosing the following values for S1f and S2f:

S1f ¼ S2f ; S2f ¼ S2ð1� f Þ ð62Þ

Since we used this model only for comparison purposes, we
did not study the effect of the grout allocation factor (f), so
we kept f = 0.5 in all of our computations. The author also
proposed a logarithmic extrapolation procedure to im-
prove the accuracy of the model. This aspect was not con-
sidered here.

Secondly, when we tried the model proposed by Sutton
et al., we observed a step in the temperature response when
the solution changed from the two modes: short time, long
time. This problem seems to be produced by the choice of
the transition time (14). A better choice was given by the
following relation:

R0stðsgroutÞ ¼
Gð1; assgrout=r2

bÞ
ks

þ R0b ð63Þ

This choice is also more coherent with (15). In the first re-
sults, a constant heat flux was imposed on the inner bound-
ary. The solution is given by (44). As it is seen on Fig. 7a,
(44) is the exact solution of the problem whereas the two
other solutions simulate well the problem for large time.
The buried cable model is indeed better than the classical
approach but deviate from the solution at very short time
as it is observed by Young. In his work Young [7] proposes
to improve the accuracy by adjusting the Grout Allocation
Factor and by using a logarithmic extrapolation from the
numerical solution. As we said, these aspects were not
investigated here. We observe that the solution proposed
by Sutton et al. gives very good results for small value of
time. This is normal, since the inner core does not see the
ground at the beginning. We can observe some deviation
when the two regimes change. However, in the second test,
the grout conductivity value is larger than the soil. In that
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case, we observe in Fig. 7b that the compound solution devi-
ates as time increases. In fact, in that case, sgrout given by
(63) is infinite. For this reason we did not continue with
more investigations with this approach.
4.1.1. Arbitrary heat function

Before analysing the results for mixed boundary condi-
tions, we will need to look at the temperature variation
when the heat flux varies in time. The classical way to treat
the problem is to express the arbitrary heat function into a
series of step functions [5,14]. For example, the tempera-
ture using our short-time response factor, would be given
by the following expression:

T pð~tÞ ¼ T 0 þ
XN

i¼1

q0bi � q0bi�1

kg

Gstqð1;~t �~ti�1Þ ð64Þ

The same procedure can easily be used with (21) instead.
Application of (15) can also be extended but in that
case, it is a little bit more laborious. It is known that appli-
cation of (64) can be very time consuming. Several methods
have been proposed to increase the speed of calculation
[5,14,15]. We will come back to this aspect in a latter sec-
tion but for now we will keep (64) as it is to treat the tem-
perature response when the fluid temperature is imposed.

4.2. Concentric cylinders when convection with a given fluid

temperature

In the second series of tests, a fluid temperature with a
given convection coefficient was imposed. The exact solu-
tion is then given by (61). The other models however can-
not be used directly. In that case, since the fluid
temperature is kept constant, the heat flux will vary with
time and (64) must be used. It must however be modified
since the variable heat flux is not known. Any response
factor can be used ,we will describe the procedure with
(21). The following algorithm will be used:
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4.2.1. Initialization

At t = 0, we assume Tp(0) = T0

At t ¼ 1 � D~t, using (64)

T pðD~tÞ � T 0

¼ q0bð1ÞGbcðD~tÞ=ks ¼ hP ðT f � T pðD~tÞÞGbcðD~tÞ=ks ð65Þ

) T pðD~tÞ � T 0 ¼
ðT f � T 0ÞhPGbcðD~tÞ=ks

1þ hPGbcðD~tÞ=ks

ð66Þ

) q0bð1Þ ¼ hP ðT f � T pðD~tÞÞ ð67Þ
At t ¼ 2 � D~t, using (64)

T pð2D~tÞ�T 0

¼ q0bð2ÞGbcðD~tÞ=ksþq0bð1ÞðGbcð2D~tÞ�GbcðD~tÞÞ=ks

¼ q0bð1ÞðGbcð2D~tÞ�GbcðD~tÞÞ=ksþhPðT f �T pð2D~tÞÞGbcðD~tÞ=ks

ð68Þ
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1þhPGbcðD~tÞ=ks

ð69Þ
) q0bð2Þ¼ hPðT f �T pð2D~tÞÞ ð70Þ

..

.

T pðND~tÞ�T 0¼
SþðT f �T 0ÞhPGbcðD~tÞ=ks

1þhPGbcðD~tÞ=ks

ð71Þ

q0bðND~tÞ¼ hPðT f �T pðND~tÞÞ ð72Þ

with

S ¼
XN�1

i¼1

q0bðiÞðGbcððN � iþ 1ÞD~tÞ � GbcððN � iÞD~tÞÞ=ks

ð73Þ
Figs. 8a and 8b show some results for the concentric cylin-
ders subject to mixed boundary conditions with the same
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value of conductivity and diffusivity as in the fixed heat flux
case. As we said in the previous section, the compound
solution suggested by Sutton et al. was not considered any-
more. As it is seen, (61) is the exact solution of the problem
whereas the other approach is a good approximation of the
short time thermal response.
4.2.2. Arbitrary fluid temperature

In the case of a variable fluid temperature, the applica-
tion of the Duhamel’s principle can be used. If we assume
that the fluid temperature consists of a series of step
changes, the solution for this special case is given in Ozisik
[13, p. 201]:

T pð~tÞ � T fð~tÞ ¼
XN�1

j¼0

Gstcð1;~t � jD~tÞDðT 0 � T fjÞ ð74Þ
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4.3. U-tube configuration

In the context of a geothermal heat pump, the heat
exchanger consists of a U-tube arrangement and in that
case, no exact solution is known. However, as it is the case
for many models, the one proposed here can be used with
the application of an equivalent radius. Some results will be
presented here and compared with the other approaches
discussed previously, that are the buried cable approxima-
tion and the steady-state modeling of the grout. For the
expression of the equivalent radius, we chose the value
(18), proposed by Sutton et al. [6]. However for the calcu-
lation of the borehole resistance, we chose the expression
proposed by Hellström [4].

Figs. 9a and 9b show the results for the case where the
heat flux is fixed with shank spacing B for two different val-
ues of relative conductivity and heat capacity. Two figures
are shown for each case where the right one is a zoom for
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very short time. We did the same calculations when mixed
boundary conditions are applied. The results are shown in
Figs. 10a and 10b for shank spacing B.

5. Conclusion

The solutions presented in this paper are believed to be a
good contribution to the modeling of a geothermal heat
exchanger for short time transient response. These effects
are important when we are interested in the following
informations: real time simulations of heat pump systems
for time less than an hour, peak load effect for the length
calculations of vertical heat exchangers and for the evalua-
tion of the ground thermal properties in short period of
time. Although the first aspect can be dealt with by numer-
ical models that take into account the thermal capacities of
the borehole, analytical solutions are very attractive for all
parts of the design procedures.
It was observed that the model proposed follow very
well the numerical results. Although the analytical expres-
sions look rather complicated, these functions were easily
implemented and the numerical evaluations of these
expressions were very quick.

Appendix A. Zeros of Bessel functions

Inside the integration contour, we have �p < Arg(s) < p,
so �p/2 < Arg(q) < p/2. In order to prove that (36) has no
zeros inside the contour, we have

den ¼ ðK0ðq2rbÞI1ðq1rbÞ þ ~kcK1ðq2rbÞI0ðq1rbÞÞK1ðq1reÞ
� ðK0ðq2rbÞK1ðq1rbÞ � ~kcK1ðq2rbÞK0ðq1rbÞÞI1ðq1reÞ
¼ ðK1ðq1reÞI1ðq1rbÞ � K1ðq1rbÞI1ðq1reÞÞK0ðq2rbÞ
þ ðI0ðq1rbÞK1ðq2reÞ þ K0ðq1rbÞI1ðq1reÞÞK1ðq2rbÞ~kc

ð75Þ
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We can show that these two terms are positive for
jArg(q)j < p/2. First of all, it is known [16, p. 377], that
Kn(z) has no zeros in that region. Since they are positive
on the positive real axis, they remain so in the right hand
plane. We need to prove that the two following expressions
are positive also:

W 1 ¼ K1ðq1reÞI1ðq1rbÞ � K1ðq1rbÞI1ðq1reÞ > 0 ð76Þ
W 2 ¼ I0ðq1rbÞK1ðq2reÞ þ K0ðq1rbÞI1ðq1reÞ > 0 ð77Þ

To do so, we replace the modified Bessel functions by the
following expressions:

I0ðzÞ ¼ J 0ðzejp=2Þ; I1ðzÞ ¼ �jJ 1ðzejp=2Þ
K0ðzÞ ¼ p

2
jH 0ðzejp=2Þ; K1ðzÞ ¼ �p

2
H 1ðzejp=2Þ

ð78Þ

So

W 1 ¼
jp
2

H 1ðu1reÞJ 1ðu1rbÞ � H 1ðu1rbÞJ 1ðu1reÞð Þ ð79Þ

W 1 ¼
p
2

J 1ðu1reÞY 1ðu1rbÞ � J 1ðu1rbÞY 1ðu1reÞð Þ ð80Þ

with u1 = q1 ejp/2, so 0 < Arg(u1) < p. Since all the roots of
(80) are real and simple [17], this expression has no roots
and since it is positive when u1 is purely imaginary, the real
part is always positive. The real part of W2 is also always
positive for jArg(q)j < p/2, since in that region, the real
part of In and Kn are positive [16] in that region.

To show that (49) has no zeros inside the contour, we
proceed to same way:

ðn1q1 � n2q2Þ

¼ ðK1ðq1reÞI1ðq1rbÞ � K1ðq1rbÞI1ðq1reÞÞK0ðq2rbÞw

þ ðK0ðq1reÞI0ðq1rbÞ � K0ðq1rbÞI0ðq1reÞÞK1ðq2rbÞ~kc

þ ðI0ðq1rbÞK1ðq2reÞ þ K0ðq1rbÞI1ðq1reÞÞK1ðq2rbÞw~kc

þ ðI1ðq1rbÞK0ðq2reÞ þ K1ðq1rbÞI0ðq1reÞÞK0ðq2rbÞ

ð81Þ

with w ¼ q1kg

h . The first two terms are similar to W1 for the
constant flux case, where as the other two are similar to the
W2 term in the last section.
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